

ROBOTICS

Product specification

IRB 460

Trace back information: Workspace 24D version a4 Checked in 2024-12-09 Skribenta version 5.6.018

Product specification IRB 460-110/2.4

IRC5

Document ID: 3HAC039611-001

Revision: R

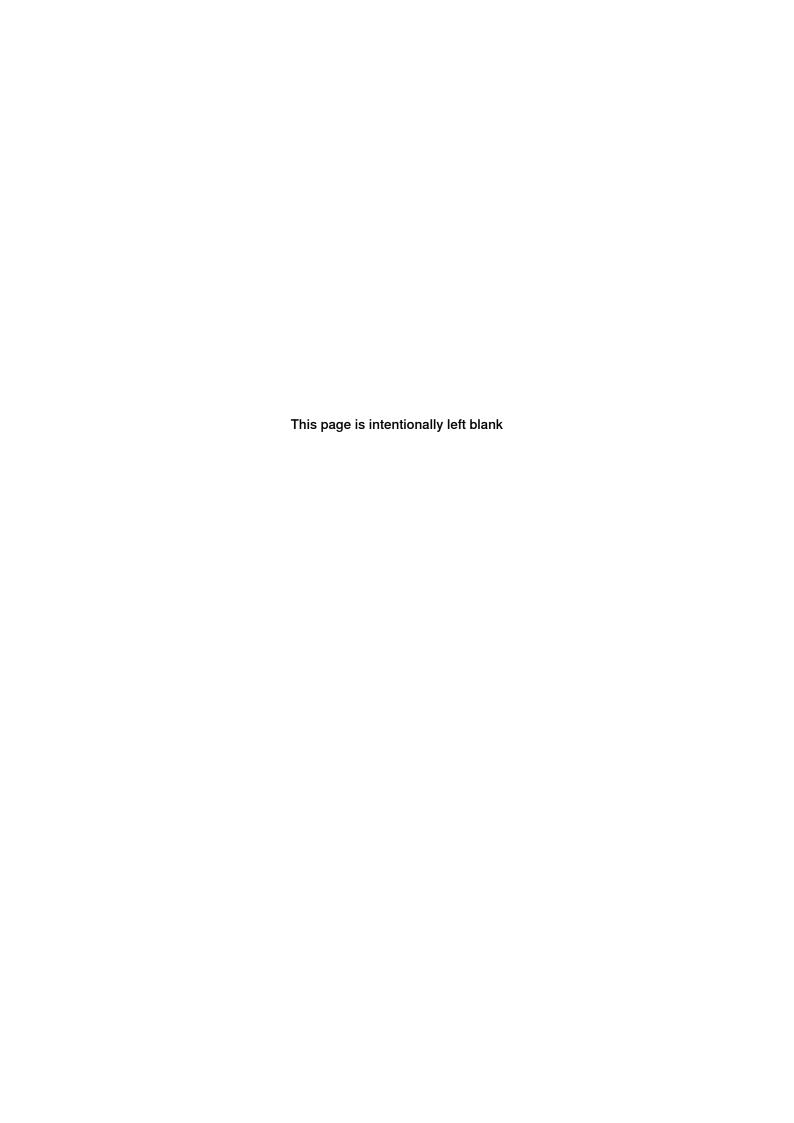
The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.


Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2012-2024 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	view of this product specification	,
1	Desc	ription	9
	1.1	Structure	9
	•••	1.1.1 Introduction	9
		1.1.2 Different robot versions	11
	1.2	Safety standards	13
	1.2	1.2.1 Applicable standards	13
	1.3	Installation	15
	1.3	1.3.1 Introduction	15
			16
		1.3.2 Technical data	
	4.4	1.3.3 Mounting the manipulator	20
	1.4	Calibration and references	25
		1.4.1 Calibration methods	25
		1.4.2 Fine calibration	26
		1.4.3 Synchronization marks and axis movement directions	27
		1.4.3.1 Synchronization marks and synchronization position for axes	27
		1.4.3.2 Calibration movement directions for all axes	28
	1.5	Load diagrams	29
		1.5.1 Introduction to load diagrams	29
		1.5.2 Load diagrams	30
		1.5.3 Maximum load and moment of inertia	31
		1.5.4 Maximum TCP acceleration	32
	1.6	Mounting of equipment	33
	1.7	Robot motion	36
		1.7.1 Introduction	36
		1.7.2 Performance according to ISO 9283	38
		1.7.3 Velocity	39
		1.7.4 Robot stopping distances and times	40
	1.8	Cooling fan for axis 1 motor	41
	1.9	Customer connections	42
		Maintenance and troubleshooting	44
		1.10.1 Introduction	44
			•
2	Spec	ification of variants and options	45
	2.1	Introduction to variants and options	45
	2.2	Manipulator	46
	2.3	Floor cables	49
	2.4	User documentation	50
	2.5	Warranty	51
	2.0	Trainality	J 1
3	Acce	ssories	53
	3.1	Introduction to accessories	53
Inc	dex		55

Overview of this product specification

About this product specification

This product specification describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety, and operating equipment
- The load diagrams, mounting or extra equipment, the motion, and the robot reach
- · The specification of available variants and options

The specification covers the manipulator using the IRC5 controller.

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

The specification is intended for:

- · Product managers and product personnel
- · Sales and marketing personnel
- · Order and customer service personnel
- · Integrators and customers

References

Reference	Document ID
Product manual - IRB 460	3HAC039842-001
Product specification - Controller IRC5 IRC5 with main computer DSQC1000.	3HAC047400-001
Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 6.	3HAC050945-001
Product specification - Robot user documentation, IRC5 with RobotWare 6	3HAC052355-001
Product specification - Robot stopping distances according to ISO 10218-	3HAC048645-001

Revisions

Revision	Description
-	New product specification
Α	Minor corrections
В	Table for ambient temperature adjusted
С	Machinery directive updatedUpdated load diagramMinor corrections
D	Base plate drawing updated

Continued

Revision	Description
Е	Minor corrections/updateOption 87-1 added
F	Text for ISO test adjusted
G	Graphite white color added
Н	Minor corrections/update
J	Published in release R17.1. The following updates are done in this revision: • Axis Calibration method added • Restriction of load diagram added
К	Published in release R17.2. The following updates are done in this revision: • Updated list of applicable standards.
L	Published in release R18.1. The following updates are done in this revision: TCP acceleration added.
М	Published in release R18.2. The following updates are done in this revision: TCP acceleration information updated. Added locating hole position in tool flange view.
N	 Published in release R20D The following updates are done in this revision: Minor changes. New customer option cable harness (with ethernet cable) added. See details in <i>Customer connections on page 42</i>. Warranty section updated.
P	 Published in release 21D. The following updates are done in this revision: Text regarding fastener quality is updated. Removed Axis resolution. The data for robot stopping distances is removed. See Product specification - Robot stopping distances according to ISO 10218-1.
Q	 Published in release 22B. The following updates are done in this revision: Updated data for power consumption. Updated table of positions at wrist center in Robot motion section. Updated the drawing of fitting extra equipment on upper arm.
R	Published in release 24D. The following updates are done in this revision: • Added RAL code in manipulator color • Updated the section <i>Technical data on page 16</i> .

1.1.1 Introduction

1 Description

1.1 Structure

1.1.1 Introduction

Robot family

IRB 460 is ABB Robotics latest generation of, 4-axis palletizing robot, designed with a focus on its high production capacity, short cycle time at a high payload, long reach together with the very high uptime, which is significant for ABB's robots. It is available in one version with a handling capacity of 110 kg and a reach of 2.4 m.

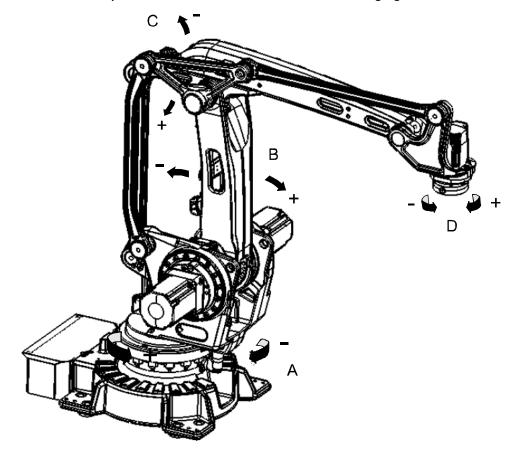
Customer connections as power, signals, Bus signals and one air are integrated in the robot, from the robot base to connections at the robot tool flange.

IRC5 and RobotWare

The robot is equipped with the IRC5 controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication and so on. For more information, see *Product specification - Controller IRC5 with FlexPendant*.

Safety

Safety standards valid for complete robot, manipulator and controller.


Additional functionality

For additional functionality, the robot can be equipped with optional software for application support. For a complete description of optional software, see the *Product specification - Controller software IRC5*.

1.1.1 Introduction Continued

Manipulator axes

The IRB 460 manipulator has 4 axes as shown in the following figure.

xx1000001337

Position	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

1.1.2 Different robot versions

1.1.2 Different robot versions

General

The IRB 460 is available in one version, for floor mounting (no tilting allowed around X or Y axis).

Robot type	Handling capacity (kg)	Reach (m)
IRB 460	110 kg	2.4 m

Manipulator weight

Robot type	Weight (kg)
IRB 460	925 kg

Other technical data

Data	Description	Note
	The sound pressure level outside the working space	< 70 dB (A) Leq (acc. to Machinery directive 2006/42/EG).

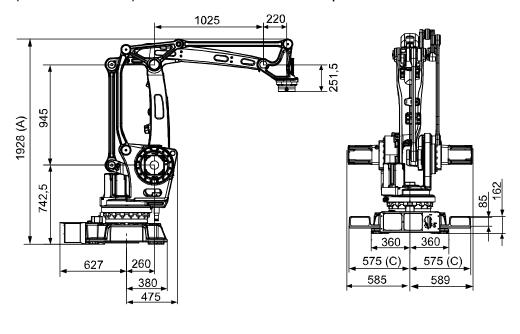
Power consumption at max speed (vmax)

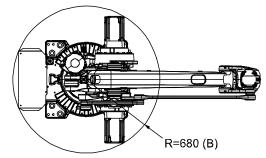
Type of movement	IRB 460
ISO cube Max. velocity	3.5 kW
General palletizing movements	4.31 kW

Robot in calibration position	IRB 460
Brakes engaged	0.11 kW
Brakes disengaged	0.38 kW

The path E1-E2-E3-E4 in the ISO cube is shown in the following figure.

xx1000000101


Position	Description
Α	1,000 mm


1.1.2 Different robot versions

Continued

Dimensions of IRB 460

The following figure shows the rear, side and top view of the IRB 460 manipulator (dimensions in mm). Allow 200 mm behind the manipulator for cables.

xx1000001031

Position	Description
Α	2278 mm max working range
В	Radius for axis 3 motor
С	Forklift width 1150 mm

1.2.1 Applicable standards

1.2 Safety standards

1.2.1 Applicable standards

Note

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

General

The product is designed in accordance with ISO 10218-1:2011, Robots for industrial environments - Safety requirements -Part 1 Robots, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviations from ISO 10218-1:2011, these are listed in the declaration of incorporation which is part of the product delivery.

Normative standards as referred to from ISO 10218-1

Standard	Description
ISO 9283:1998	Manipulating industrial robots - Performance criteria and related test methods
ISO 10218-2	Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration
ISO 12100	Safety of machinery - General principles for design - Risk assessment and risk reduction
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design
ISO 13850	Safety of machinery - Emergency stop - Principles for design
IEC 60204-1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements

Region specific standards and regulations

Standard	Description
ANSI/RIA R15.06	Safety requirements for industrial robots and robot systems
ANSI/UL 1740	Safety standard for robots and robotic equipment
CAN/CSA Z 434	Industrial robots and robot Systems - General safety requirements

Other standards used in design

Standard	Description
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments

1.2.1 Applicable standards *Continued*

Standard	Description
ISO 13732-1:2006	Ergonomics of the thermal environment - Part 1
IEC 60974-1:2012 ⁱ	Arc welding equipment - Part 1: Welding power sources
IEC 60974-10:2014 ⁱ	Arc welding equipment - Part 10: EMC requirements
ISO 14644-1:2015 ⁱⁱ	Classification of air cleanliness
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)

i Only valid for arc welding robots. Replaces IEC 61000-6-4 for arc welding robots.

ii Only robots with protection Clean Room.

1.3.1 Introduction

1.3 Installation

1.3.1 Introduction

General

IRB 460 is designed for floor mounting (no tilting allowed around X or Y axis), end effector with max. weight of 110 kg including payload, can be mounted on the mounting flange (axis 6). For more information, see *Load diagrams on page 29*.

Working range

The working range of axis 1 can be limited by mechanical stops.

The option *Electronic Position Switches* can be used on all axes, for position indication of the manipulator.

Explosive environments

The robot must not be located or operated in an explosive environment.

1.3.2 Technical data

1.3.2 Technical data

Weight, robot

The table shows the weight of the robot.

Robot model	Weight
IRB 460	925 kg

Note

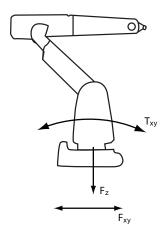
The weight does not include tools and other equipment fitted on the robot.

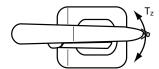
Mounting positions

The table shows valid mounting options for the manipulator.

Mounting option	Installation angle	Note
Floor mounted	0°	

Note


The actual mounting angle must always be configured in the system parameters, otherwise the performance and lifetime is affected. See the product manual for details.


1.3.2 Technical data Continued

Loads on foundation, robot

The illustration shows the directions of the robots stress forces.

The directions are valid for all floor mounted, suspended and inverted robots.

xx1100000521

F _{xy}	Force in any direction in the XY plane
Fz	Force in the Z plane
T _{xy}	Bending torque in any direction in the XY plane
T _z	Bending torque in the Z plane

The table shows the various forces and torques working on the robot during different kinds of operation.

Note

These forces and torques are extreme values that are rarely encountered during operation. The values also never reach their maximum at the same time!

WARNING

The robot installation is restricted to the mounting options given in following load table(s).

Floor mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 6.2 kN	± 10.6 kN
Force z	10 ± 3.8 kN	10 ± 6.5 kN
Torque xy	± 13.7 kNm	± 23 kNm
Torque z	± 5.3 kNm	± 7.9 kNm

1.3.2 Technical data Continued

Requirements, foundation

The table shows the requirements for the foundation where the weight of the installed robot is included:

Requirement	Value	Note
Flatness of foundation surface	0.3 mm	Flat foundations give better repeatability of the resolver calibration compared to original settings on delivery from ABB.
		The value for levelness aims at the circumstance of the anchoring points in the robot base.
Minimum resonance frequency	Note It may affect the manipulator lifetime to have a lower resonance frequency than recommended.	The value is recommended for optimal performance. Due to foundation stiffness, consider robot mass including equipment. For information about compensating for foundation flexibility, see the application manual of the controller software, section <i>Motion Process Mode</i> .

The minimum resonance frequency given should be interpreted as the frequency of the robot mass/inertia, robot assumed stiff, when a foundation translational/torsional elasticity is added, i.e., the stiffness of the pedestal where the robot is mounted. The minimum resonance frequency should not be interpreted as the resonance frequency of the building, floor etc. For example, if the equivalent mass of the floor is very high, it will not affect robot movement, even if the frequency is well below the stated frequency. The robot should be mounted as rigid as possibly to the floor.

Disturbances from other machinery will affect the robot and the tool accuracy. The robot has resonance frequencies in the region 10 – 20 Hz and disturbances in this region will be amplified, although somewhat damped by the servo control. This might be a problem, depending on the

requirements from the applications. If this is a problem, the robot needs to be isolated from the environment.

Storage conditions, robot

The table shows the allowed storage conditions for the robot:

Parameter	Value
Minimum ambient temperature	-25° C
Maximum ambient temperature	+55° C
Maximum ambient temperature (less than 24 hrs)	+70°C
Maximum ambient humidity	95% at constant temperature (gaseous only)

Operating conditions, robot

The table shows the allowed operating conditions for the robot:

Parameter	Value
Minimum ambient temperature	0°C
Maximum ambient temperature	+45°C
Maximum ambient humidity	95% at constant temperature

1.3.2 Technical data Continued

Protection classes, robot

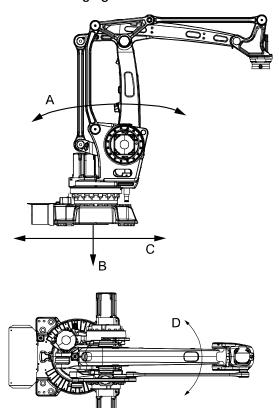
The table shows the available protection types of the robot, with the corresponding protection class.

Protection type	Protection class i
Manipulator, protection type Standard	IP 67

i According to IEC 60529.

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


Maximum load

Maximum load in relation to the base coordinate system.

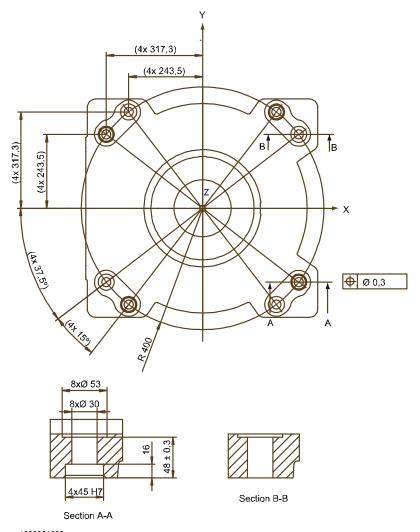
Floor Mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 6.2 kN	± 10.6 kN
Force z	10 ± 3.8 kN	10 ± 6.5 kN
Torque xy	± 13.7 kNm	± 23 kNm
Torque z	± 5.3 kNm	± 7.9 kNm

The following figure shows the direction of forces.

xx1000001032

Α	Torque _{xy} (T _{xy})
В	Force _z (F _z)
С	Force _{xy} (F _{xy})
D	Torque _z (T _z)


Note regarding $\mathbf{M}_{\mathbf{x}\mathbf{y}}$ and $\mathbf{F}_{\mathbf{x}\mathbf{y}}$

The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system. The same applies to the transverse force (F_{xy}) .

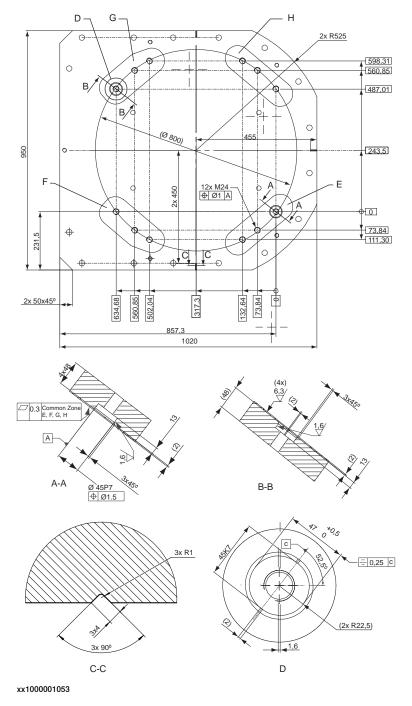
1.3.3 Mounting the manipulator Continued

Fastening holes robot base

The following figure shows the hole configuration (dimensions in mm).

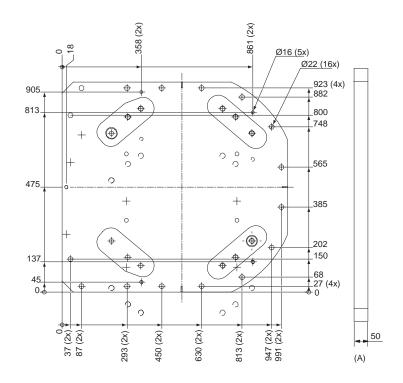
xx1000001033

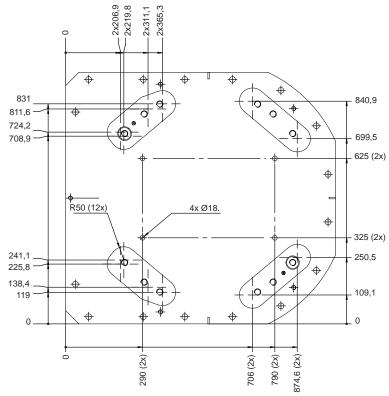
Recommended screws for fastening the manipulator to the base	M24 x 100 8.8 with 4 mm flat washer
Torque value	725 Nm


Note

Only two guiding sleeves shall be used. The corresponding holes in the base plate shall be circular and oval according to the following base plate drawing. Regarding AbsAcc performance, the recommended are the chosen guide holes those are according to the following base plate drawing.

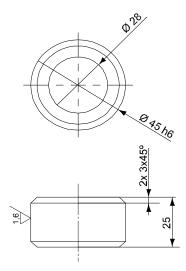
1.3.3 Mounting the manipulator *Continued*


Base plate drawing


The following figure shows the option base plate (dimensions in mm).

E, F, G, H Common tolerance zone (accuracy all over the base plate from one contact surface to the other)

1.3.3 Mounting the manipulator Continued



xx1000001054

Position	Description
Α	Color: RAL 9005
	Thickness: 80-100 μm

1.3.3 Mounting the manipulator

Continued

xx1000001055

Position	Description
Α	Guide sleeve protected from corrosion

1.4.1 Calibration methods

1.4 Calibration and references

1.4.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Axis Calibration
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	

Brief description of calibration methods

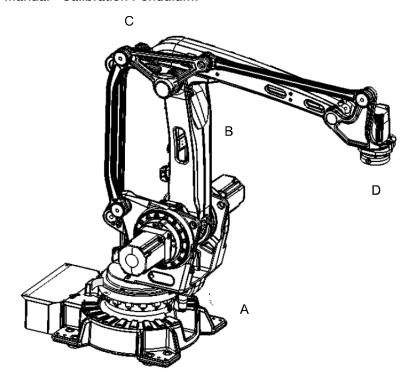
Axis Calibration method

Axis Calibration is a standard calibration method for calibration of IRB 460. It is the recommended method in order to achieve proper performance.

The following routines are available for the Axis Calibration method:

- · Fine calibration
- Update revolution counters
- · Reference calibration

The calibration equipment for Axis Calibration is delivered as a toolkit.


The actual instructions of how to perform the calibration procedure and what to do at each step is given on the FlexPendant. You will be guided through the calibration procedure, step by step.

1.4.2 Fine calibration

1.4.2 Fine calibration

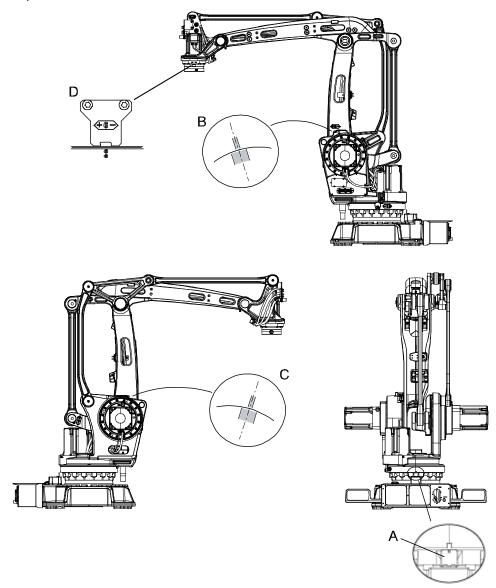
General

Fine calibration is made using *Calibration Pendulum*, see *Operating manual - Calibration Pendulum*.

xx1000001038

Position	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

Calibration	Position
Calibration of all axes	All axes are in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position Axis 2 to 6 in any position


1.4.3 Synchronization marks and axis movement directions

1.4.3.1 Synchronization marks and synchronization position for axes

Introduction

This section shows the position of the synchronization marks and the synchronization position for each axis.

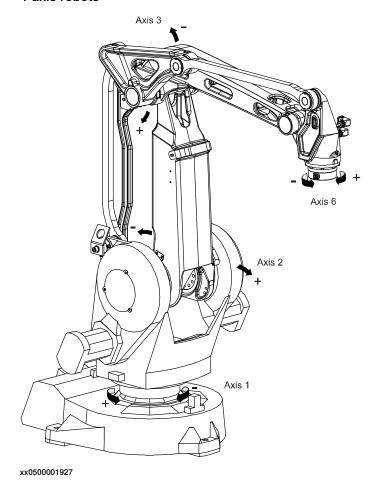
Synchronization marks, IRB 460

xx1000001433

Α	Calibration plate, axis 1
В	Calibration mark, axis 2
С	Calibration mark, axis 3
D	Calibration plate and marking, axis 6

1.4.3.2 Calibration movement directions for all axes

1.4.3.2 Calibration movement directions for all axes


Overview

When calibrating, the axis must consistently be run towards the calibration position in the same direction in order to avoid position errors caused by backlash in gears and so on. Positive directions are shown in the graphic below.

Calibration service routines will handle the calibration movements automatically and these might be different from the positive directions shown below.

Manual movement directions, 4 axes

Note! The graphic shows an IRB 260. The positive direction is the same for all 4-axis robots

1.5.1 Introduction to load diagrams

1.5 Load diagrams

1.5.1 Introduction to load diagrams

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- · motors
- gearboxes
- · mechanical structure

WARNING

In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load.

See Operating manual - IRC5 with FlexPendant, for detailed information.

WARNING

Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

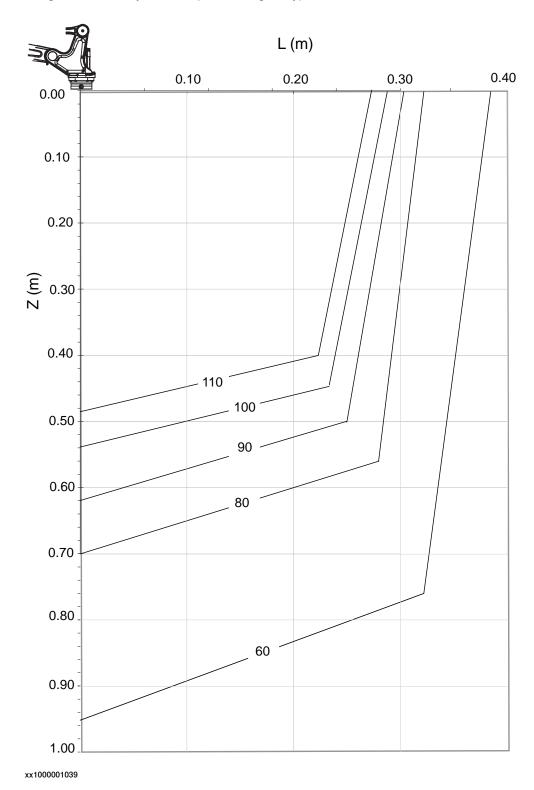
General

The load diagram include a nominal payload inertia, J_o of 5 kgm 2 . No extra load on upper arm.

At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case with RobotLoad

To verify a specific load case, use the RobotStudio add-in RobotLoad.

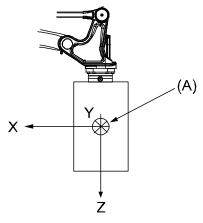

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted arm load is exceeded. For over-load cases and special applications, contact ABB for further analysis.

1.5.2 Load diagrams

1.5.2 Load diagrams

IRB 460-110/2.4

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).


1.5.3 Maximum load and moment of inertia

1.5.3 Maximum load and moment of inertia

General

Load in kg, Z and L in m and J in kgm 2

Axis	Maximum moment of inertia
6	$Ja_6 = Load \times L^2 + J_{0Z} \le 70 \text{ kgm}^2$

xx1000001078

Position	Description
Α	Center of gravity

	Description
J_{ox}, J_{oy}, J_{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.

1.5.4 Maximum TCP acceleration

1.5.4 Maximum TCP acceleration

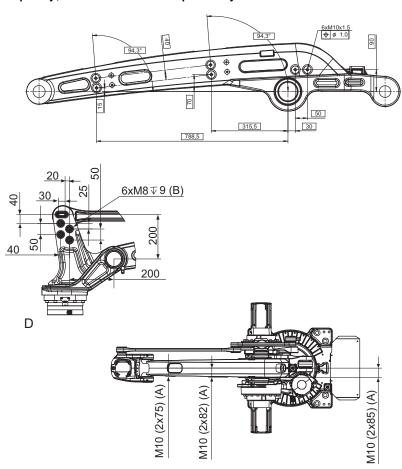
General

Higher values can be reached with lower loads than the nominal because of our dynamical motion control QuickMove2. For specific values in the unique customer cycle, or for robots not listed in the table below, we recommend to use RobotStudio.

Maximum Cartesian design acceleration for nominal loads

Robot type	•	Controlled Motion
	Max acceleration at nominal load COG [m/s ²]	Max acceleration at nominal load COG [m/s ²]
IRB 460	45	28

Note

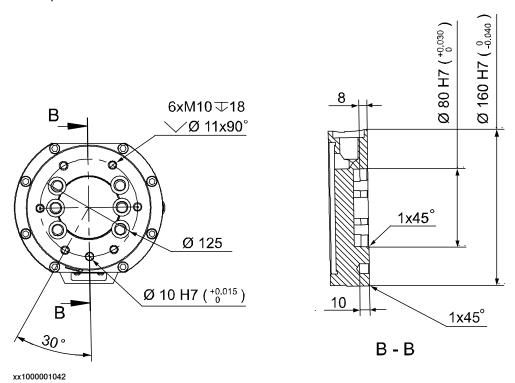

Acceleration levels for emergency stop and controlled motion includes acceleration due to gravitational forces. Nominal load is defined with nominal mass and cog with max offset in Z and L (see the load diagram).

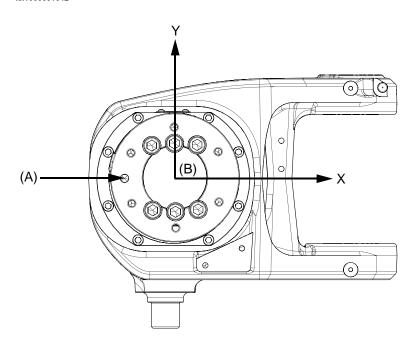
1.6 Mounting of equipment

General

Extra loads can be mounted on to the upper arm. Holes and definitions of masses are shown in the following figures.

For mounting of an external vacuum hose there are six holes on the upper arm. The max. weight for the vacuum hose and fastening device is 35 kg. When using the holes, the weight of the vacuum hose shall be reduced from the max. Handling capacity, for each variant respectively.


xx1000001041


Position	Description
Α	Mounting hole on upper arm
В	Drill depth 15 mm

1.6 Mounting of equipment *Continued*

Robot tool flange

The following figure shows the robot tool flange SS-EN ISO 9409;2004 (dimensions in mm).

xx1800001402

-	Tool flange in bottom view
Α	Locating hole
В	Tool coordinate system

1.6 Mounting of equipment Continued

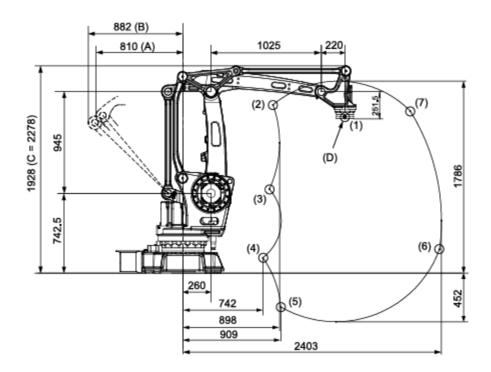
Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.7.1 Introduction

1.7 Robot motion

1.7.1 Introduction


Type of motion

Axis	Type of motion	Range of movement
1	Rotation motion	+165° to -165°
2	Arm motion	+85° to -40°
3	Arm motion	+120° to -20°
6	Turn motion	+300° to -300° Default +150 revolutions to -150 revolutions maximum ⁱ

The default working range for axis 6 can be extended by changing parameter values in the software. Option 610-1 *Independent axis* can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

Illustration

The following figure shows the extreme positions of the robot arm specified at tool flange center (dimensions in mm).

xx1000001043

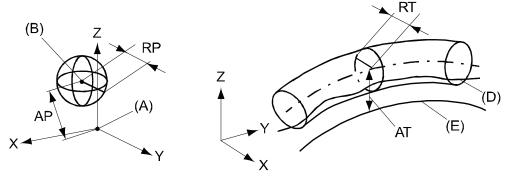
Position	Description
Α	Max. working range
В	Mechanical stop
С	Max. working range

1.7.1 Introduction Continued

Position	Description
D	Tool flange center

Positions at wrist center

Position number, see figure above	X Position (mm)	Z Position (mm)	Axis 2 Angle (degrees)	Axis 3 Angle (de- grees)
1	1505	1437	0	0
2	836	1565	-40	-20
3	802	782	-40	25
4	742	145	55	120
5	909	-314	85	120
6	2385	223	85	20
7	2111	1510	45	-20


1.7.2 Performance according to ISO 9283

1.7.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Position	Description	Position	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution

Description	IRB 460-110/2.4
Pose accuracy, AP ⁱ (mm)	0.20
Pose repeatability, RP (mm)	0.20
Linear path repeatability, RT (mm)	0.11
Linear path accuracy, AT (mm)	3.89
Pose stabilization time, PSt (s)	0.65

AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots.

1.7.3 Velocity

1.7.3 Velocity

Maximum axis speed

Axis number	IRB 460-110/2.4
1	145°/s
2	110°/s
3	120°/s
6	400°/s

There is a supervision function to prevent overheating in applications with intensive and frequent movements.

1 Description

1.7.4 Robot stopping distances and times

1.7.4 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.

1.8 Cooling fan for axis 1 motor

1.8 Cooling fan for axis 1 motor

Option 87-1

To be used to avoid overheating of motor and gear in applications with intensive motion (high average speed and /or high average torque and/or short wait time) of axis 1.

Valid protection for cooling fan is IP54.

1.9 Customer connections

1.9 Customer connections

General

Depending on the choice of options above the Customer connection will have different content. The choice of routing will not affect the content. See tables for signal content below.

For further information of the customer connection, see *Specification of variants* and options on page 45.

Media & Communication, Parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel communication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5		
			Brass 24 de- gree seal		

Media & Communication, Ethernet, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Functional Earth (FE)		10mm ²	M8 Cable lug		
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel com- munication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 degree seal		
Bus com- munication (BUS)	Ethernet/IP, PROFINET	4x0.4mm ²	M12, 4-poles, D-coded, male	Harting 21038821425	Ethernet CAT5e 100 Mbit ¹ .

Continues on next page

¹ Ethernet with wire colors according to PROFINET standard

1.9 Customer connections Continued

Media & Communication, DeviceNet/Profibus, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel com- munication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 de- gree seal		
Bus com- munication (BUS)	Profibus	2xAWG26 Z=150 Ohm (1MHz)	UTOW socket connector 10p, Bulkhead	UTOW 71210SH06	
	DeviceNet	2xAWG26 Z=120 Ohm (1MHz)			
	BUS power & BUS utility	2x2 AWG24			

1.10.1 Introduction

1.10 Maintenance and troubleshooting

1.10.1 Introduction

General

The robot requires only minimum maintenance during operation. It has been designed to make it as easy to service as possible:

- · Maintenance-free AC motors are used
- · Oil is used for the gear boxes
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see *Product manual - IRB 460*.

2.1 Introduction to variants and options

2 Specification of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 460 are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Variants

Option	IRB Type	Handling capacity (kg)	Reach (m)
435-107	460	110	2.4

Manipulator color

Option	Color	RAL code ⁱ
209-2	ABB white standard Standard color	RAL 9003
209-201	NCS 2070-Y60R Orange	NCS 2070-Y60R
209-202	ABB Graphite White std	RAL 7035
209	RAL code should be specified (ABB non-standard colors)	

i The colors can differ depending on supplier and the material on which the paint is applied.

Note

Notice that delivery time for painted spare parts will increase for ABB none standard colors.

Protection

Option	Description
287-4	Standard

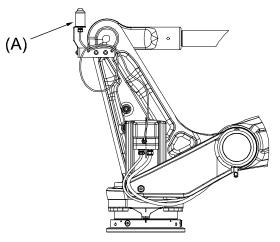
Media & communication

Air supply and signals for extra equipment upper arm, see *Customer connections* on page 42.

Option	Description	Note
803-1	Parallel communication and air	Includes CP/CS and air.
803-2	Ethernet cable, parallel communication and air	Include CP/CS and Ethernet + air
803-3	DeviceNet, parallel communication and air	Includes CP, CS and DeviceNet + air
803-4	PROFIBUS, parallel communication and air	Includes CP, CS and PROFIBUS + air

Connector kits

The kit consists of connectors, pins and sockets.


Option	Description	
431-1	For the connectors on the upper arm.	
239-1	For connectors on foot	

Continues on next page

2.2 Manipulator Continued

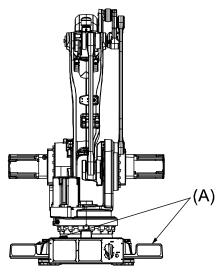
Safety lamp

Option	Description
213-1	A safety lamp with an orange fixed light can be mounted on the manipulator. The lamp is active in MOTORS ON mode. The safety lamp is required on a UL/UR approved robot.

xx1000001163

Position	Description
Α	Safety lamp

Cooling fans for axis 1 motor


To be used to avoid overheating of motors and gears in application with intensive motion (high average speed and/or high average torque and/or short wait time) of axis 1. IP54 valid for cooling fan.

Option	Description	
87-1	Cooling fan for axis 1 motor.	

Fork lift device

Option	Description	
159-1	1 Lifting device on the manipulator for fork-lift handling.	

2.2 Manipulator Continued

xx1000001164

	Position	Description	
A Fork lift device (x4)		Fork lift device (x4)	

Base plate

Option	Description	
37-1	See Installation on page 15.	

Electronic Position Switches (EPS)

Electronic Position Switches (EPS) is an additional safety computer in the controller, with the purpose of providing safe output signals representing the position of robot axes. The output signals are typically connected to cell safety circuitry and/or a safety PLC which takes care of interlocking the robot cell, for example in order to prevent robot and operator to enter a common area simultaneously. See *Application manual - Electronic Position Switches*.

Working range limit axis 1

To increase the safety of the robot, the working range of axis 1 can be restricted by extra mechanical stops.

Option	Туре	Description
29-2	Axis 1, 7.5/15 degrees	Two stops which allows the working range to be restricted in increments of 7.5 or 15 degrees.

2.3 Floor cables

Manipulator cable length

Option	Lengths
210-2	7 m
210-3	15 m
210-4	22 m
210-5	30 m

Application interface connection

Option	Description	
16-1		The signals are connected to 12-pole screw terminals, Phoenix MSTB 2.5/12-ST-5.08, to the control module.

Note

In a MultiMove application, additional robots have no control module. The screw terminal with internal cabling are then delivered separately to be mounted in the main robot control module or in another encapsulation, for example a PLC cabinet.

Connection of Parallel/DeviceNet/Profibus/Ethernet connection

Following information specifies the cable length for Parallel/DeviceNet/Profibus/Ethernet floor cables for connections between cabinets and manipulator.

Option	Lengths
94-1/90-2/92-2/859-1	7 m
94-2/90-3/92-3/859-2	15 m
90-4/92-4/859-3	22 m
94-4/90-5/92-5/859-4	30 m

2.4 User documentation

2.4 User documentation

User documentation

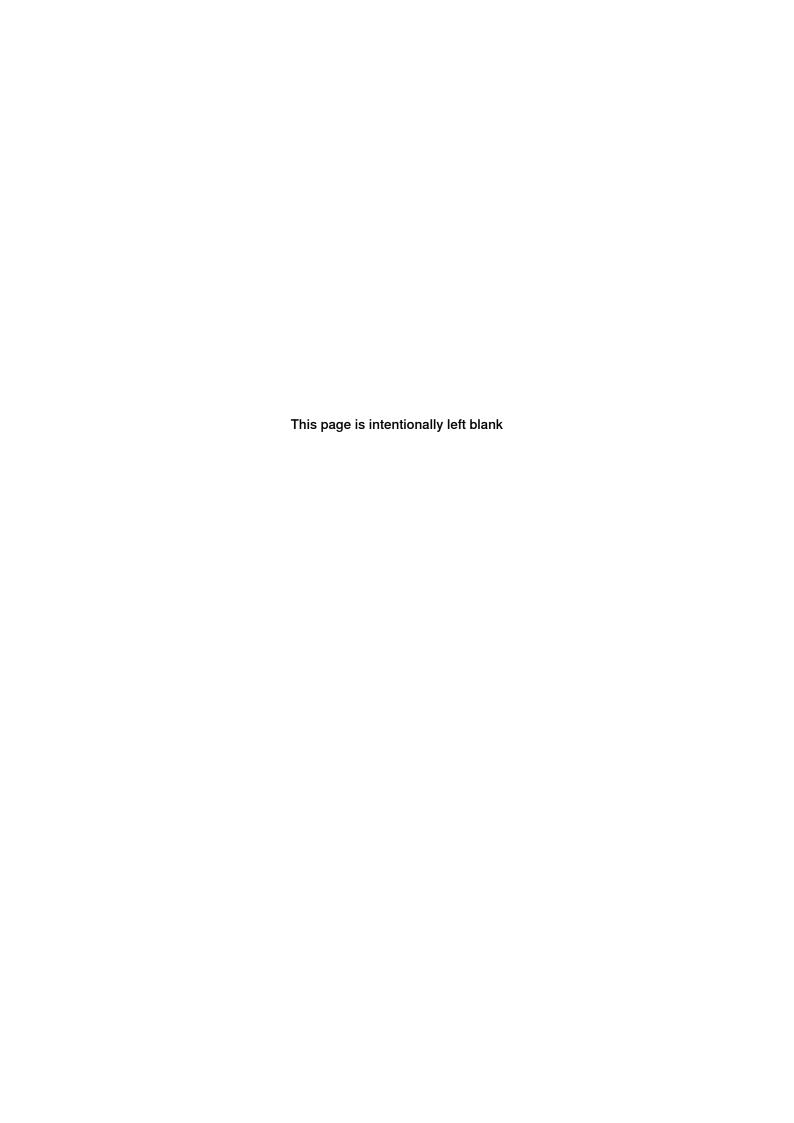
The user documentation describes the robot in detail, including service and safety instructions.

Tip

All documents can be found via myABB Business Portal, www.abb.com/myABB.

2.5 Warranty

Warranty


For the selected period of time, ABB will provide spare parts and labor to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly *Preventative Maintenance* according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed with ABB Connected Services for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The *Extended Warranty* period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the *Terms & Conditions*.

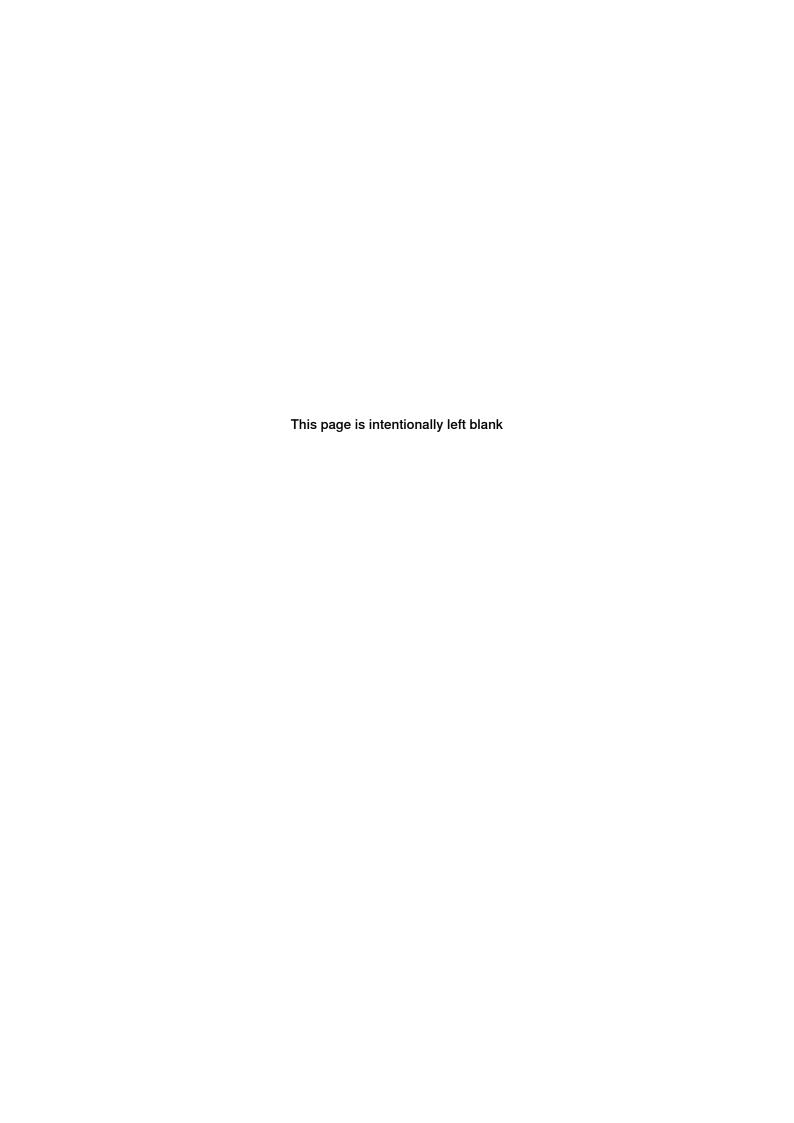
Note

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig.
		Note
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .

3.1 Introduction to accessories

3 Accessories


3.1 Introduction to accessories

General

There is a range of tools and equipment available.

Basic software and software options for robot and PC

For more information, see *Product specification - Controller IRC5* and *Application manual - Controller software IRC5*.

Index 0 operating conditions, 18 options, 45 accessories, 53 ambient humidity positive directions, axes, 28 operation, 18 product standards, 13 storage, 18 protection classes, 19 ambient temperature protection type, 19 operation, 18 storage, 18 requirements on foundation, 18 C robot calibration protection class, 19 standard type, 25 protection types, 19 calibration marks, 27 Calibration Pendulum, 26 S calibration position safety standards, 13 scales, 27 scales on robot, 27 calibration scales, 27 service instructions, 50 category 0 stop, 40 standards, 13 category 1 stop, 40 **ANSI, 13 CAN, 13** EN IEC, 13 EN ISO, 13 direction of axes, 28 documentation, 50 standard warranty, 51 stock warranty, 51 stopping distances, 40 fine calibration, 26 stopping times, 40 foundation storage conditions, 18 requirements, 18 sync marks, 27 humidity temperatures operation, 18 operation, 18 storage, 18 storage, 18 torques on foundation, 17 instructions, 50 user documentation, 50 loads on foundation, 17 variants, 45 М manuals, 50 warranty, 51 weight, 16 negative directions, axes, 28

ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 10-732 50 00

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics